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1 Introduction

Accurate numerical simulation of problems in fluid mechanics requires using
a method whereby the mesh can track free surfaces or fluid-solid or fluid-
fluid interfaces whilst coping with large distortions of the continuum. Such
methods are referred to as Arbitrary Lagrangian Eulerian (ALE) methods
and may be furthered studied in [1]. In order for the mesh to adapt to the
deforming domain, a mesh update procedure must be performed at each time
step of a calculation. In this paper we focus on a mesh update technique
which aims to maintain or even improve the quality of a deforming mesh
whilst accurately tracking the domain boundary. We focus on a problem from
microfluid dynamics in order to illustrate our proposed method.

2 Mesh Optimisation

2.1 Quality Measure

Finding a suitable quality measure that provides an accurate estimate of an
element’s effects in terms of discretisation/interpolation error and stiffness
matrix condition is challenging and is a very active area of research in itself.
There are many measures in existence and these may be further studied in [2]
and [3]. A triangular element has many properties which determine its effect
on the accuracy of a FEM simulation, however the interior angles of the ele-
ment have been shown to be of greatest importance. Of the many measures in
existence, very few directly eliminate deleterious interior angles from meshes.
Instead, they aim to modify some other quantity which is indirectly linked
to an element’s interior angles. In theory, a measure which determines new
nodal positions based on an element’s interior angles should produce meshes
which are far more suited for use in Finite Element (FE) simulations. Several
measures already exist which operate directly on an element’s interior angles,
such as using the sine of the interior angles of element as a quality measure.
In theory, this measure should be effective. However, Figure 1 demonstrates
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why this is not so. A typical objective function would sum the sines (or the
square of the sines) of every angle in the solution space, that is the set of
angles which are effected by the movement of a node. When the selected node
is moved in the triangular mesh, Figure 1, 18 angles are affected. If one angle
is made worse or even negative, the objective function may not reflect this
as the contributions of the other angles in the solution space overpower it.
[4] proposed a solution involving non-smooth optimisation referred to as the
minimum sine measure, which seeks to maximise the minimum sine of the
angles in a mesh. This involves selecting the worst angle in the solution space
and moving the free node in the direction of greatest improvement until it
is no longer the worst angle. This algorithm is included in Mesquite [5] and
Stellar [6], both showing it to be effective. However, a smooth objective func-
tion in theory should yield much better results as the full range of numerical
optimisation tools are available.

Fig. 1. When the free node is moved, 18 angles are affected.

In order to address the deficiencies of existing quality measures, we propose a
new quality measure which involves using a log-barrier as an objective function
and expresses every angle as a function of the worst angle in the solution space.
This takes the following form:

q =
sin2(θ)

2(1 − γ)
− log(sin(θ) − γ) (1)

where θ is the angle and γ is the worst angle in the solution space. Each angle
in the solution space is weighted logarithmically according to its sine; the
smaller the sine, the greater the weight. This is shown graphically in Figure
2. The use of a log-barrier is explained in detail in [7].

2.2 Boundary Nodes

Elements containing boundary nodes introduce additional complexity to the
optimisation process. Nodes which lie on the boundary of the domain can
only be moved in a manner which respects the geometry and volume of the
domain. The geometry of the domain is determined by the physical processes
being modelled and thus must be respected; the volume must also be con-
served. Nodes which lie on surfaces which may be mathematically defined are
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Fig. 2. Log Barrier

straightforward to move. However, nodes which lie on more complex surfaces
are much more difficult to move in a manner which respects both volume
and geometry. The authors have developed a method for moving such nodes
which is clearly explained and demonstrated in three-dimensions in [7]. A
two-dimensional version of this algorithm is currently under development.

3 Applications

Computational mechanics is often used to study problems with evolving ge-
ometries, for example problems involving fracture, microfluids, surface tension
and crystal growth. Such problems are usually solved by applying an ALE
formulation which requires the use of mesh updating procedures. These up-
date procedures may include remeshing, modifying mesh topology and mesh
smoothing. Remeshing and topological modifications introduce large numeri-
cal errors at the beginning of each time step making convergence difficult to
achieve. For this reason, we wish to limit remeshing and topological modifi-
cations during the simulation process. Therefore we propose using mesh op-
timisation techniques to determine the optimal nodal positions at every time
step by coupling the mesh optimisation equations with the physical equations.
Coupling is the process of solving the physical equations and the mesh opti-
misation equations simultaneously. Coupling the mesh optimisation equations
with the physical equations results in a more efficient technique which gives
the user control over the numerical errors and allows for quadratic conver-
gence when an implicit method, such as a Newton solver, is used. We believe
that such techniques will allow the use of larger time steps and give us stable
control over numerical errors. Adaptive time stepping is used to determine
the largest possible time step to ensure stability of the simulation. Too small
a time step and the simulation will be too slow; too large a time step and the
solver will fail to converge. Therefore, any measure which can safely increase
the time step is worth implementing.

To demonstrate the application of mesh optimisation to such problems,
we shall apply the quality measure introduced in Section 2.1 to a two di-
mensional axisymmetric model of a fluid droplet which we have developed
that can accurately predict the response of microfluid droplets subjected to
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gravitational forces and surface acoustic waves. This droplet undergoes mas-
sive deformations, Figure 3, and thus the mesh must adapt to the deforming
domain.

Fig. 3. Deformed microfluid droplet with the pressure distribution plotted

3.1 Mesh Optimisation

The original implementation of this simulation involved the use of Laplacian
smoothing. The idea behind Laplacian smoothing is that the nodes of high
quality mesh are separated by equal distances. However, the inverse is not
true - good mesh need not consist of equidistant nodes. As a result, Lapla-
cian smoothing can induce excessive and unnecessary nodal displacements in
initially good mesh. Every nodal displacement generates non-linearities which
negatively effect the rate of convergence and the efficiency of the calculation.
Another reason why we require an alternative to Laplacian smoothing is that
although it is somewhat effective in 2D, it is not at all effective in 3D. When
the 2D model performs satisfactorily, the next step will be to implement it in
3D; thus techniques which will translate to three dimensions are required.

4 Results and Problems

The mesh optimisation algorithm was first verified in a decoupled form using
the meshes in Figure 3. In both cases much better meshes were obtained. The
nodes on the curved surface were assumed to be fixed. Once verified, the op-
timisation equations were coupled with the physical equations and the results
compared with those obtained using Laplacian smoothing. This simulation
was run until the droplet reached its equilibrium position. The mesh update
algorithms are judged by four criteria: the number of times remeshing was
required, the percentage volume loss, the number of time steps taken to reach
the equilibrium position and the range of interior angles in the mesh during
the entire simulation. The results shown in Table 1 show that our mesh opti-
misation algorithm had the desired effect of reducing the need to remesh. The
loss of minute quantities of volume has been a problem throughout the de-
velopment process and in this case the application of our mesh optimisation
techniques has reduced the volume loss by almost three-quarters compared
to Laplacian smoothing. The simulation using Laplacian smoothing reached
the equilibrium position in fewer time steps than the one using mesh opti-
misation. In fact, Laplacian smoothing reached the equilibrium position in
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Table 1. Comparison of Laplacian Smoothing and Mesh Optimisation

Mesh Update Times Volume Number of Range of
Algorithm Remeshed Loss Time Steps Angles

Laplacian Smoothing 533 -0.139% 3200 8.07◦-163.06◦

Mesh Optimisation 277 -0.036% 5100 23.5◦-115.03◦

approximately half the time taken by mesh optimisation as each of mesh op-
timisation’s time steps took longer to solve. This can be partly explained by
the time taken to calculate the mesh quality contributions to the stiffness ma-
trix and force vector. However, this is not a satisfactory explanation and thus
warrants further investigation. A much higher quality mesh was obtained by
mesh optimisation throughout the entire simulation process as can be seen in
Table 1. This shows that our mesh optimisation scheme is much more effective
than Laplacian smoothing at ensuring that the mesh throughout the entire
simulation is suitable for the calculations being performed on it.

5 Future Work

This project is very much a work in progress. The next step is to determine
the reasons for the simulation run with mesh optimisation taking significantly
longer than with Laplacian smoothing. We also wish to add the smoothing of
surface nodes to our model. We believe that this will greatly reduce the need
to remesh, thus giving us more control over the numerical errors. Once this
model performs satisfactorily in 2D, the next step will be to implement it in
3D.
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